Lower costs & improved services by assessing transportation routes periodically Case March 27th, 2014 Supply Chain Innovations 2014, Antwerp Presentation by Mohamed Lasgaa 48 years of Top Consultancy Logistics Supply Chain Management Supply Chain Strategy > Implementation Independent Multidisciplinary Team Leading Edge # The Customer | CUSTOMER PROFILE | | | | | |------------------------|---|--|--|--| | Activities | Manufacturing & distribution of building systems based on aluminum profiles for windows and (sliding) doors | | | | | Position | European Market Leader within the SBU | | | | | Markets | Offices - schools - hospitals - business parks - airports - shopping centers | | | | | Sales Area | Europe & Asia | | | | | Net Sales
(FY 2012) | € 300 Mio (€ 4,000 Mio on Group level) | | | | | Employees
(FY 2012) | 1,200 (15,000 on Group level) | | | | ### Voice of the Customer For their customer base in Belgium (ca. 300 delivery addresses), they were supplying either directly from their Belgian DC either indirectly via a X-dock hub: - 70% of shipments directly from DC to Customers via 25 fixed milk runs (by an outsourced transportation company). - 30% of shipments via own X-Dock center (consolidation with other shipments) - Delivery lead time when production order is finished: A for C Voice of the Customer Is the current fixed routings setup still the most efficient one? # Plan of Approach # Belgian Distribution Network ### **Customer Places** RED = DELIVERED FROM DC | GREEN = DELIVERED FROM X-DOCK # **Density Plot of Customers** #### SIZE BASED ON GROSS WEIGHT DELIVERED ### Number of Deliveries per Customer 46% OF THE CUSTOMERS ARE DELIVERED AT LEAST ONCE A WEEK - The majority of the customers (36%) are delivered less than once in two weeks; - 18% customers are delivered bi-weekly and 26% customers are delivered weekly; - 20% customers are delivered at least twice a week; - The average drop size increases as the frequency of the deliveries increases. ### Distribution of drop size 40% OF THE DELIVERIES HAS A DROP SIZE LOWER THAN 50 KG - The average drop size of the deliveries is 359 KG; - About 40% of the shipments have a drop size below 50 KG. ### Simulation of As-Is #### **OVERVIEW OF ASSUMPTIONS** - Simulation is based on active customers only; - Simulation is done for 3 representative weeks (low-average-peak); - The customer delivery time window is from 7:30 till 16:30; - The earliest dispatch time allowed is 6:00 AM; - Maximum driving time is 10 hours; - Customer is delivered on a same day; - 2 type of vehicles are available: - A small truck with a capacity of 4.500KG; - A large truck with a capacity of 10.000KG; - Historic traffic information is used. ### Simulation of As-Is #### AVERAGE COST PER DROP IS € 78,20 ### Methodology to develop robust routes FIRST OPTIMIZATION (ALL ACTIVE CUSTOMERS) THEN SIMULATION REPRESENTATIVE WEEKS Optimization 40 Robust Routes & Sequencing > Simulation Robust Routes # Robust Routes Optimization & Simulation from DC #### OVERVIEW OF ASSUMPTIONS - Optimization & simulation is based on active customers only; - Simulation is done for 3 representative weeks (low-average-peak); - 5% of truck capacity and 14% of time is reserved for non-active customers; - All shipments are shipped from DC (no volumes through X-dock); - The customer delivery time window is from 7:30 till 16:30; - The earliest dispatch time allowed is 6:00 AM; - Maximum driving time is 10 hours; - Customer is delivered 1 or 2 times according to the service level; - 2 type of vehicles are available: - A small truck with a capacity of 4.500KG: € 0,84 cost per KM; - A large truck with a capacity of 10.000KG: € 1,16 cost per KM; - Cost per drop: € 25; - Historic traffic information is used. # Robust Routes Optimization & Simulation from DC AVERAGE TRANSPORT COSTS OF € 69,40 PER DELIVERY (INCL. LINE-HAUL) ### As-Is vs. New Optimized Robust Routes DECREASE IN DROPS (-0,9 DROPS) PER ROUTE AND INCREASE IN DISTANCE PER DROP (6.2KM) | Simulation | Scenario | # Drops | Routes | #Drops/Route | Distance (KM) | Distance per drop (KM) | |--------------|-------------------|---------|--------|--------------|---------------|------------------------| | Low week | As-Is | 154 | 32 | 4.8 | 8,108 | 52.6 | | | New Robust Routes | 121 | 23 | 5.3 | 5,442 | 45.0 | | Delta | | -33 | -9 | 0.4 | -2,666 | -7.7 | | | | | | | | | | Average week | As-Is | 193 | 35 | 5.5 | 8,812 | 45.7 | | | New Robust Routes | 148 | 32 | 4.6 | 7,668 | 51.8 | | Delta | | -45 | -3 | -0.9 | -1,144 | 6.2 | | | | | | | | | | High week | As-Is | 199 | 38 | 5.2 | 10,562 | 53.1 | | | New Robust Routes | 149 | 31 | 4.8 | 7,442 | 49.9 | | Delta | | -50 | -7 | -0.4 | -3,120 | -3.1 | - The As-Is routes: the actual amount of drops are simulated; - The New Robust routes: the number of drops are simulated according to the service levels. ### Final Results - Applying new robust routes result in a transport cost savings of 11% p.a.; - 40 new optimal robust routes are defined to serve both active/non-active customers; - Small trucks only should be sufficient; - On top: - Lead time reduction; - Risk mitigation on damages because of no re-handling at X-dock; - Increasing space capacity at X-dock because of eliminating X-dock volumes; - Eliminating handling costs at X-dock. #### Recommendations: - Perform a daily route optimization by re-routing the routes that have a low number of drops; - Static route planning is the best alternative for time being. Dynamic route planning is estimated to achieve additional savings potential of ca. 3% p.a. Mohamed Lasgaa Managing Consultant SCM & Logistics THANK YOU VERY MUCH FOR YOUR ATTENTION lasgaa@groenewout.com www.linkedin.com/in/mohamedlasgaa www.groenewout.com